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Abstract—Network slicing is a key feature of 5G and beyond
networks. Intelligent management of slices is important for reap-
ing its highest benefits which needs further exploration. Focusing
only on one goal as revenue maximization or cost minimization
may not generate the highest profit for infrastructure providers
in the long run. In this paper we jointly consider online admission
and placement of Radio Access Network (RAN) slices with two
objectives - a) maximizing revenue from accepting slices which
are more profitable in the long run, and b) minimizing the cost to
deploy them in Open RAN (O-RAN) enabled network by placing
the slices efficiently. We formulate it as an optimization problem
and propose a Deep Reinforcement Learning (DRL) based
solution using Proximal Policy Optimization (PPO). We compare
our model with a state-of-the-art DRL based admission control
solution and a greedy heuristic. We show that our proposed
solution can efficiently adapt to dynamic load conditions. We also
show that the proposed solution results in better performance
to maximize the overall profit for infrastructure providers in
comparison to the baselines.

Index Terms—Radio Access Network, Deep Reinforcement
Learning, O-RAN, Energy Efficiency, Network Slicing.

I. INTRODUCTION

With the introduction of network slicing, the physical net-
work is treated as multiple logical networks that share under-
lying infrastructures. To maximize the profit of infrastructure
providers, the long-term impact of admitting a slice needs to
be evaluated. On the other hand, deployment of slices should
be done efficiently, failing which the Operational Expenditure
(OPEX) will grow high. Authors of [1]–[3] consider slice/user
function placement in RAN to optimize processing and band-
width resources. However, these works do not consider admis-
sion control of slices or their long-term impact. In [4], a utility
maximization problem for wireless networks is proposed. The
given solution maximizes utility for each request at a time
but does not consider when some requests need to be dropped
to accommodate more profitable upcoming requests. In [5],
DRL based virtual network embedding is proposed, however
different revenue factor of requests is not considered. Also,
the cost of idle power consumption is not considered which is
crucial to reduce OPEX in the network. In [6], [7], DRL based
RAN slice admission control is proposed to maximize long-
term revenue of infrastructure providers. However the cost of
their deployment is not considered by the authors. The idle
servers in the network cause a significant cost for infrastructure
providers. So, to minimize OPEX this cost must be reduced.
On the other hand, to maximize revenue, high profitable slices

need to be admitted intelligently. However, not many works
have considered these two things together. In [8], different
revenue factors of services and idle cost of virtual machines
are considered. Though, the proposed solution doesn’t capture
long-term impact of accepting a request. Different from the
above works in this paper, we formulate an optimization
model which maximizes profit in different load scenarios by
considering two factors - a) long-term revenue from accepted
slices, and b) idle cost of servers to deploy them. In case
of high load, higher profit can be achieved by intelligently
rejecting less profitable slices to accommodate more profitable
slices. In case of low load, profit can be maximized by
consolidating slices so that fewer servers are used to deploy
them. The main contributions of this paper are as follows-

• We formulate an optimization problem for online ad-
mission and placement of RAN slices to maximize the
long-term profit of infrastructure providers in O-RAN
considering different revenue factors of slices and the idle
cost of servers to deploy them.

• We present a Deep Reinforcement Learning (DRL) based
solution to solve the optimization problem intelligently.

• We compare our proposed model with a state-of-the-
art DRL based admission control solution and a greedy
heuristic. We show that the proposed solution efficiently
adapts to dynamic load scenarios and outperforms other
strategies in maximizing the long-term profit for infras-
tructure providers.

II. SYSTEM MODEL

We consider a hybrid cloud architecture (Fig. 1) as our
system model. In O-RAN the base station is disaggregated
into three components- a) Radio Unit (RU), which holds the
lower physical layer functions of a base station, b) Distributed
Unit (DU) that holds higher physical layer, Radio Link Control
(RLC) layer and Medium Access Control (MAC) layer, and
c) Centralized Unit (CU) that holds Packet Data Convergence
Protocol (PDCP) layer and Radio Resource Control (RRC)
layer. Due to this splitting of baseband processing, O-RAN
components can be flexibly placed in separate locations. There
are many RUs deployed in the network. Several edge clouds
are there near the RUs where DU processing functions of slices
are placed. A regional cloud is there where CU processing
functions are placed. The regional cloud is further connected
to the core network (not shown in Fig. 1). A link between



Fig. 1. RAN System Model.

a RU and edge cloud, between edge and regional cloud and
between regional cloud and the core network are known as
fronthaul, midhaul and backhaul respectively.

III. PROBLEM FORMULATION

In this section, we propose our optimization model for
online admission and placement of RAN slices. The deploy-
ment of a RAN slice considers placement of its CU, DU and
corresponding links. To simulate a real network, we consider
dynamic arrival and departure of slices with different holding
time, slices with different revenue factors etc. The variables
used in the formulation are defined in Table I. To maximize
the profit, we consider the following two factors, a) revenue
generated from accepting more profitable slices, b) cost of idle
power consumption of servers in various clouds for deploying
the slices. Total revenue generated by slice acceptance is
described as follows,

REV =
∑
s∈S

xsrvshts (1)

where xs is a binary variable which denotes if the slice s is
admitted or not. rvs is the revenue of slice s in Monetary

TABLE I
NOTATION

Notation Description
xs 1 if Slice s is admitted, 0 otherwise
rvs Revenue from slice s per unit time
hts Holding time of slice s
cv Cost of server v per unit time
ujt 1 if Server j in edge cloud is used at time t, 0 otherwise
vkt 1 if Server k in regional cloud is used at time t, 0 otherwise
ysj Slice s is connected to edge server j at time t or not
zsk Slice s is connected to regional server k at time t or not
S Set of all slices
CE Capacity of servers in edge cloud
CR Capacity of servers in regional cloud
E Set of servers in edge clouds
R Set of servers in the regional cloud
rus RU of slice s
ej Edge cloud of server j
cus Processing requirement in CU for slice s
dus Processing requirement in DU for slice s
Ds Delay budget of slice s
EC Set of edge clouds
RU Set of Radio Units
λru
s 1 if slice s is originated from RU ru
lst 1 if a slice s is admitted and is in service at time t
T Overall time duration.

Unit (MU) per timestep whereas hts is the holding time of
slice s. The cost for deploying the slices in terms of server
usage is described as follows,

C =
∑
t∈T

(
∑
j∈E

ujtcj +
∑
k∈R

vktck) (2)

where ujt denotes at particular timestep t, a server j in the
edge clouds is being used or not. vkt denotes the same for
the server k in the regional cloud. c denotes the cost in MU
per timestep for keeping a server on which is decided by
infrastructure providers. To maximize the overall profit, we
define our objective as follows,

Maximize : REV − C (3)

where REV and C are defined in Eqn. (1) and (2) respectively.
REV and C are normalized under same scale as both denote
some amount in monetary unit for a period of time. We use a
variable lst which represents if a slice s is in service at time
t, i.e.,

lst =

{
xs, ts ≤ t < (ts + hts)

0, otherwise

where ts is the time when a slice request comes.
The optimization constraints are defined as follows,
a) Capacity constraints of server in edge/regional cloud:

The total processing placed in any server of an edge/regional
cloud can not exceed its capacity at any timestep t.∑

s∈S

ysj lstdus <= CEj ,∀j ∈ E,∀t ∈ T (4)

∑
s∈S

zsklstcus <= CRk,∀k ∈ R,∀t ∈ T (5)

b) Capacity constraint of transport links: The traffic flow in
the fronthaul, midhaul, and backhaul cannot exceed their total
capacity.∑
s∈S

∑
j∈e

ysj lstλ
ru
s fs <= F e

ru,∀e ∈ EC,∀ru ∈ RU,∀t ∈ T

(6)∑
s∈S

∑
j∈e

ysj lstms <= Me,∀e ∈ EC,∀t ∈ T (7)

∑
s∈S

∑
k∈R

zsklstbs <= B, ∀t ∈ T (8)

Here F , M , and B contain the total capacity of fronthaul,
midhaul, and backhaul, respectively. fs, ms, and bs are the
transport requirement of the slice s for the same.

c) Delay constraint for slices: The total delay imposed by
the fronthal, midhaul, and backhaul links used for routing a
slice can not exceed the delay budget of that slice.

ysjδ1rusej + ysjzskδ2ej + zskδ3 <= Ds

∀s ∈ S, ∀j ∈ E,∀k ∈ R
(9)

Here, δ1, δ2, and δ3 denote the delay of the fronthaul, midhaul,
and backhaul links, respectively.



d) Other constraints:
If a server in edge or regional cloud is used by any of the
slice requests at time t then the server is declared as a used
server.

ujt >= ysj lst,∀s ∈ S, ∀j ∈ E,∀t ∈ T (10)

vkt >= zsklst,∀s ∈ S, ∀k ∈ R,∀t ∈ T (11)

A slice can be connected to at most one edge/regional cloud
server. ∑

j∈E

ysj <= 1,∀s ∈ S (12)

∑
k∈R

zsk <= 1,∀s ∈ S (13)

If a slice s is admitted at time ts, it must be connected to
servers in the edge cloud and the regional cloud for its holding
time period hts.∑

i∈E

ysj lst = xs,∀s ∈ S, ∀t ∈ [ts, ts + hts) (14)

∑
k∈R

zsklst = xs,∀s ∈ S, ∀t ∈ [ts, ts + hts) (15)

Additional binary constraints are defined as follows,

ysj , zsk, ujt, vkt, xs, lst ∈ {0, 1},
∀s ∈ S,∀j ∈ E,∀k ∈ R,∀t ∈ T

(16)

IV. DEEP REINFORCEMENT LEARNING BASED SOLUTION

Deep Reinforcement Learning (DRL) has been proven to
be effective in solving problems of high complexity without
having any prior knowledge. Generally, to solve a problem
with RL, the problem is modeled as a Markov Decision
Process (MDP). We now describe the MDP model and the
DRL algorithm to solve our optimization problem.

A. MDP Model Formulation

The state space, action space, and reward function of our
MDP model are defined as follows-

1) State Space: We denote a state st ∈ S as a tuple {Rt,
Et, Bt, SDt, It}. Rt and Et denote the remaining capacities
in all the servers in regional and edge cloud, respectively
at timestep t. Bt denotes the remaining capacities in all the
transport links and It holds the information of the slice request
to be processed at timestep t. SDt contains the information
when each of the servers in edge and regional cloud will sleep
next based on the slices it is serving. The information of a
slice request It is defined as {dr, ht, type, RU}. Here, dr is
the data rate requirement of the slice, ht denotes the holding
time of the slice request. type represents the slice type from
which its revenue and QoS requirement can be determined.
RU denotes the RU from where the slice request is generated.
From the information of a slice, its CU/DU processing and
bandwidth requirements are calculated.

2) Action Space: In each time step, the RL agent selects an
action at from a set of available actions A, which is known
as action space. We denote an action as {R, E} where R
and E represent the selected servers in the regional and edge
cloud for the placement of CU and DU processing of a slice,
respectively. Action {-1,-1} denotes the action to reject a slice
as no server is selected for its placement. From the selected
server locations, the fronthaul and midhaul links for routing
the slice are identified.

3) Reward Function: The reward function defines, given
the current state st, how the RL agent will be rewarded when
a particular action at is taken. The reward function R(st, at)
denoting the profit for infrastructure provider is formulated as
the revenue from admitting a slice request minus the cost of
using servers after deploying it.

R(st, at) =

{
REVt − Ct, when slice is accepted
0, when slice is rejected

where REVt and Ct comes from Eqn.(1) and (2) respectively.
REVt is the revenue generated from the slice at timestep t.
To find the value of Ct, we check the next sleeping time of
the selected servers from SDt stored in the state space. Let’s
denote the next sleeping time of server v as nextv . If slice s
is placed in server v at timestep t, then the cost incurred in
server v for slice s is denoted as,

Cv
t =


htscv, Case 1
((t+ hts)− nextv)cv, Case 2
0, Case 3

where cv denotes the idle cost of vth server per unit time
and hts is the holding time of slice s. Case 1 denotes the
scenario when the slice is placed on a previously off server.
Case 2 denotes when the slice is placed on a already on server
and nextv < (t + hts) i.e. the duration of the slice partially
overlaps with previous slices in server v. Case 3 denotes the
scenario when the slice is placed on a already on server and
nextv >= (t+hts), i.e. the duration of the slice fully overlaps
with previous requests in server v. Ct will include the cost of
both the selected servers in edge and regional cloud at timestep
t. So, to maximize the profit, the RL agent tries to place a
request in an already on server. This is how the agent learns
to consolidate slices in different servers.

B. DRL Algorithm
To solve our problem, we consider an efficient DRL algo-

rithm named Proximal Policy Optimization (PPO) [9]. During
training, many invalid actions are often taken by the RL agent
unnecessarily. We use invalid action masking to restrict the
RL agent from taking an unwanted action which leads its con-
vergence with less number of episodes. The implementation
details are given in Section V-A.

V. SIMULATION AND RESULTS

A. Simulation setup
We have implemented the simulation environment in Python

using OpenAI Gym [10]. We build a simulator to simulate



TABLE II
SIMULATION PARAMETERS

Simulation Parameters Description
Number of Clouds 6 (1 Regional, 5 edge)
Total number of servers 8 servers
Number of server in regional cloud 3
Number of servers in edge cloud 1 in each cloud
Number of RUs 3 RUs
Slice-type eMBB and URLLC
URLLC and eMBB Data-rate Requirement 1 & 3 Mbps
URLLC and eMBB Delay Requirement 2 & 4 ms
Slice holding time 10-20 timesteps
Arrival rate of slice 1-2 in each time step
Normalized Revenue of URLLC 1 MU per timestep
Normalized Revenue of eMBB 0.8 MU per timestep
Normalized Cost of server usage 1 MU per timestep
Number of slice requests 5-30 slices
Server capacity in Regional cloud 100 GOPS
Server capacity in Edge cloud 50 GOPS

the random arrival and departure of slices using Simpy [11]
and interfaced it with our Gym environment. We incorporate
changes in the implementation of PPO with action masking
[12] which is based on Stable Baselines [13]. We mask the
actions that violate the capacity constraint of servers in edge
and regional clouds. All implementations are done in Google
Colab [14] where Intel(R) Xeon(R) CPU@2.20GHz were
assigned during runtime. We perform extensive simulations
varying the number of slices, their arrival rate, and holding
time in the network. The simulation parameters used are
shown in Table II. We consider two types of slices (eMBB
and URLLC) with different requirements and revenue factors.
For simulation we assume that sufficient transport resources
are there to support all slices regarding capacity and delay
requirements. The processing requirement of CU and DU of
slices are calculated based on the energy model in [15] and [1]
and the bandwidth requirement is calculated based on [16].

B. Baseline Methods

We compare the proposed solution with following two
methods -

1) A Greedy Heuristic (Heu): In this heuristic, a slice is
always accepted if resource is available. For placement
of the slice, a server is selected using first-fit strategy
from a list of servers sorted based on their capacity in
decreasing order.

2) A DRL based solution (RMAX): We consider the reward
model of [7] as a comparison strategy where a slice is
admitted based on its revenue factor to maximize the
long-term revenue of infrastructure provider. In case of
high load, it intelligently accepts high profitable slices.
However, efficient deployment of slices is not considered
here.

C. Evaluation Metrics

For the evaluation, we consider following metrics -
1) Revenue: Infrastructure providers gain income by ac-

cepting slice requests, which is termed as revenue.
2) Cost for using servers: To deploy the admitted slice

requests various servers are switched on in edge and
regional clouds which incurs this cost.

3) Total Profit of infrastructure providers: This indicates
the total profit generated from serving the slice requests
that is revenue minus the cost of server usage.

All metrics defined above can be expressed in any monetary
unit (MU).

D. Result and Analysis

In this section, we show comparison among different strate-
gies. We consider the two load scenarios for performance
evaluation-

1) Low load: In this case, the arrival rate (α) is 1 slice per
timestep and the holding time (ht) of the slices varies
in range of [10, 15] timesteps. In this case, sufficient
resources are there to accept all slice requests.

2) High load: In this case, the arrival rate (α) is 2 slices per
timestep and the holding time (ht) of the slices varies in
the range of [10, 20] timesteps. In this case, the available
resource is not sufficient to accept all slice requests and
some of the requests need to be rejected.

We randomly generate slice requests based on the load sce-
nario and report the profit, cost, and revenue with a 95%
confidence interval for each experiment repeated 100 times.

1) Total Revenue generated from accepting slices: In
Fig. 2a and 3a, we show the revenue generated using each
strategy for low and high load scenarios, respectively. In case
of low load, the arrival rate and holding time for slices are low.
So, network resources are always available for the placement
of slices. We see that all strategies achieve similar revenue as
there is no competition for resources and all requests can be
admitted. But in the case of high load (Fig. 3a), as the number
of requests grows and most of the server resources are used up,
the heuristic generates lower revenue. This is because when
a request comes it always accepts it if resource is available
since it cannot evaluate the long-term profit of accepting any
slice. However, the DRL based algorithms intelligently accept
those slices which are more profitable in the long term.

2) Cost for server usage: In Fig. 2b and 3b, we compare the
cost from server usages in the different clouds for deploying
the slices in low and high load respectively. We observe that in
the case of low load, even though the revenue generated from
slice acceptance is almost similar in all cases, the proposed
solution incurs the lowest cost as it is able to consolidate the
CU and DU processing in different servers more efficiently.
Since heuristic cannot capture the dynamism of the network,
it is not able to consolidate RAN functions efficiently. On
the other hand, RMAX is agnostic of deployment cost and
focuses mainly on revenue maximization. Hence, it also does
not reduce the cost of server usage efficiently.

3) Total Profit for infrastructure providers: The main ob-
jective of our work is to maximize the overall profit of the
infrastructure providers under different load scenarios. In Fig.
2c and 3c, we show the total profit generated for all strategies
with the varying number of slice requests in low and high load
respectively. We observe that the proposed solution is able to
achieve maximum profit in all the scenarios. In case of low
load, the revenue generated by all strategies is similar as all



(a) Total Revenue (b) Total Cost (c) Total Profit
Fig. 2. Comparison of strategies in case of low load (α=1, ht ∈ [10, 15])

(a) Total Revenue (b) Total Cost (c) Total Profit
Fig. 3. Comparison of strategies in case of high load (α=2, ht ∈ [10, 20])

requests are accepted in each case. However, the proposed
solution incurs lower cost than the other two strategies due
to its efficient placement of slices which results in maximum
profit. In case of high load, the revenue generated by RMAX
and the proposed solution is more than the heuristic as they
selectively reject low profitable slices. However, RMAX incurs
a higher cost than the proposed solution as it does not consider
intelligent slice placement. Hence, for this case also, we
can see that the proposed solution generates maximum profit
by taking advantage of intelligent admission and placement
jointly.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of infrastructure
providers’ profit maximization in O-RAN considering different
revenue factors of slices and idle cost of servers in various
clouds. We formulated an optimization model and a DRL
based solution to maximize the desired long-term profit. Using
a simulation study, we showed that the proposed solution
is able to make an appropriate decision that can optimize
resources in different load scenarios. We also showed that
our model outperforms other strategies in maximizing long-
term profit of infrastructure provider. As future work, we want
to consider both RAN and core functions while intelligently
placing slices in the network.
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